Mathcad Lecture \#4 In-class Worksheet Vectors and Matrices 1 (Basics)

At the end of this lecture, you should be able to:

- create matrices and vectors in Mathcad
- edit matrices
- perform basic matrix math operations
- solve a system of linear equations using matrix math

1. Creating Matrices

There are several ways to create a matrix

A. The "Insert Matrix" Window (<Ctrl>M)

$B:=\left(\begin{array}{ccc}1 & -2 & 5 \\ 3 & 0 & 9\end{array}\right)$

Key Point	
	Refer to matrix size by rows x columns
Use the tab key to move between place holders.	

B. Paste a matrix from elsewhere (such as excel or a text file)

- Type variable name in Mathcad
- Open an Excel file.
- Select some data
- Copy
- Paste into the placeholder of the variable
$C:=\left(\begin{array}{cc|}0.6 & 1751.84075 \\ 0.7 & 254.9910242 \\ 0.8 & 42.94887185 \\ 0.9 & 6.636118953 \\ 1 & 0 \\ 1.1 & -0.983372449 \\ 1.2 & -0.890965288 \\ 1.3 & -0.657016914\end{array}\right)$

Key Point

You must paste into a placeholder of a variable or the data wil import as text.

C. Insert a table

- Select Insert/Data/Table from the Insert menu
- Click and then right click the upper-left cell
- \quad Select "Import" from the menu
- Use the browser to find the file containing the data (matrix.txt)
- Click OK
- Give the table a variable name

Key Points
 Do NOT create the variable name first!
 Make sure to import the table by right clicking
 Nice to use this for big tables (scroll bars)

M : $=$ 0 1 0 -2.693 -1.756 1 37.155 41.177 2 23.51 22.806 3 -67.058 -54.832 4 38.947 -62.866 5 -49.817 -57.234 6 72.397 52.075 7 12.152 -49.102 8 -93.906 93.765 9 29.669

2. Referencing Arrays

Individual elements are referenced with subscripts by typing the [key.

Demonstration

$$
\mathrm{B}=\left(\begin{array}{ccc}
1 & -2 & 5 \\
3 & 0 & 9
\end{array}\right) \quad \mathrm{B}_{0,0}=1 \quad \mathrm{~B}_{0,1}=-2 \quad \mathrm{~B}_{1,0}=3
$$

Key Points

Mathcad begins counting matrix indices at 0

- You can change the starting index by defining ORIGIN

Demonstration

ORIGIN:=1 $\quad \mathrm{B}_{1,1}=1 \quad \mathrm{~B}_{1,2}=-2 \quad \mathrm{~B}_{2,1}=3$

Demonstration: You can create matrices using index notation

Practice

1. Create the following matrix using subscript (index) notation. $\quad E=\left[\begin{array}{ll}2 & 4 \\ 3 & 1\end{array}\right]$

2. What is the value of the 9th row, 3rd column of M ?

$$
\mathrm{M}_{9,3}=-91.472
$$

3. Editing a Matrix

- You can add or delete rows and columns to existing matrices.
- It is tricky.

To add a row/column:

1. Place cursor above rows and to the left of the rows and columns to be added.
2. Open the Insert Matrix window.
3. Type the number of rows and columns to add and click Insert.

To delete a row/column:

1. Place cursor in the uppermost row and leftmost column of the rows and columns to be removed.
2. Open the Insert Matrix window.
3. Type the number of rows and columns to delete and click Delete.

Demonstration

Add 1 row 0 columns

$$
B:=\left(\begin{array}{ccc}
1 & -2 & 5 \\
3 & 0 & 9
\end{array}\right) \quad B:=\left(\begin{array}{ccc}
1 & -2 & 5 \\
1 & 1 & \mathbf{1} \\
3 & 0 & 9
\end{array}\right) \quad B:=\left(\begin{array}{ccc}
1 & -2 & 5 \\
8 & 1 & 1 \\
3 & 0 & 9
\end{array}\right)
$$

Delete 2 columns, 1 row by first 1 column 1 row and then 1 column 0 rows.

$$
B:=\left(\begin{array}{ccc}
1 & -2 & 5 \\
8 & 1 & 1 \\
3 & 0 & 9
\end{array}\right) \quad B:=\left(\begin{array}{cc}
-2 & 5 \\
1 & 1
\end{array}\right) \quad B:=\binom{-2}{1}
$$

$$
\mathrm{B}:=\left(\begin{array}{ccc}
1 & -2 & 5 \\
3 & 0 & 9
\end{array}\right) \quad \mathrm{B}:=\left(\begin{array}{ccc}
1 & -2 & 5 \\
8 & 1 & 1 \\
3 & 0 & 9
\end{array}\right) \quad \mathrm{B}:=\binom{-2}{1}
$$

Key Point

- Notice that to add a row in the middle of B, you add 1 row and 0 columns.

4. Solving Systems of Linear Equations

Explanation

- Recall that matrix math can be used solve systems of linear equations.
- A system of linear equations is one in which the variables (x, y, z) appear only to the power of 1 .

$$
\begin{aligned}
& x+y=-6 \\
& 2 x+4 \cdot y=-88
\end{aligned}
$$

- A system of linear equations can be written the following matrix form.

$$
\begin{gathered}
\mathrm{A} \cdot \mathrm{X}=\mathrm{B} \\
\text { where } \mathrm{A}=\left(\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right) \quad \mathrm{X}=\binom{\mathrm{x}}{\mathrm{y}} \quad \mathrm{~B}=\binom{-6}{-88}
\end{gathered}
$$

- The system of linear equations written in tnis form has tne toוlowing solution.

$$
\begin{aligned}
& A^{-1} \cdot A \cdot X=A^{-1} \cdot B \\
& I \cdot X=A^{-1} \cdot B
\end{aligned}
$$

$$
X=A^{-1} \cdot B
$$

- The order of the multiplication matters. The solution is $\mathrm{A}^{-1} \mathrm{~B}$ not BA^{-1}
- To determine if a solution exists to a system a linear equations, take the determinant of the coefficient matrix (A). $|\times|$ If the determinant is non-zero, a solution exits.

Demonstration

$$
\begin{array}{ll}
\hline \mathrm{A}:=\left(\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right) & \mathrm{B}:=\binom{-6}{-88} \\
\mathrm{~A}^{-1} \cdot \mathrm{~B}=\binom{32}{-38} & \text { Isolve(A,B)=2} \\
&
\end{array}
$$

Key Points

- Mathcad can obtain the answers in two ways, using an inverse or using lsolve
- Both are correct.
- lsolve uses a faster algorithm which may become important for large matrices.

5. Operations With Matrices

See Matrix Toolbar (unders Insert-toolbar-matrix) for many matrix operations

Basic Matrix Math Review

Addition and subtraction

- Two matrices can be added and subtracted only if they are the same size.
- Addition and subtraction is done element by element to create a matrix of the same size

$$
\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right)+\left(\begin{array}{lll}
\mathrm{u} & \mathrm{v} & \mathrm{w} \\
\mathrm{x} & \mathrm{y} & \mathrm{z}
\end{array}\right) \rightarrow\left(\begin{array}{lll}
\mathrm{a}+\mathrm{u} & \mathrm{~b}+\mathrm{v} & \mathrm{c}+\mathrm{w} \\
\mathrm{~d}+\mathrm{x} & \mathrm{y}+\mathrm{e} & \mathrm{f}+\mathrm{z}
\end{array}\right)
$$

Multiplication

- Two matrices can be multiplied if their inner dimensions are the same.

Example: 2×3 * 3×2 not 3×2 * 3×2.
Example: 3×3 * 3×1 not 3×1 * 3×3

- The outer dimensions tell the size of the matrix.

Example: 2×3 * 3×2 will produce a 2×2 matrix

- Remember that order matters with matrix multiplication!

$$
\begin{aligned}
& \left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right) \cdot\left(\begin{array}{ccc}
u & v & w \\
x & y & z
\end{array}\right) \rightarrow \quad \text { Error because inner dimensions don't match } \\
& \left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right) \cdot\left(\begin{array}{ll}
u & v \\
w & x \\
y & z
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
a \cdot u+b \cdot w+c \cdot y & a \cdot v+b \cdot x+c \cdot z \\
w \cdot e+d \cdot u+f \cdot y & x \cdot e+d \cdot v+f \cdot z
\end{array}\right) \\
& \left(\begin{array}{ll}
u & v \\
w & x \\
y & z
\end{array}\right) \cdot\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
a \cdot u+d \cdot v & v \cdot e+b \cdot u & c \cdot u+f \cdot v \\
a \cdot w+d \cdot x & x \cdot e+b \cdot w & c \cdot w+f \cdot x \\
a \cdot y+d \cdot z & z \cdot e+b \cdot y & c \cdot y+f \cdot z
\end{array}\right)
\end{aligned}
$$

Division

- There is not matrix division!
- Multiply by the inverse to move matrices across = signs.

Other Matrix Operations

Functions	Description
rows(A)	Returns the number of rows in matrix A
cols(A)	Returns the number of columns in matrix A
submatrix(A, ir, jr, ic, jc)	Creates a new matrix which is a portion of array A. The portion consists of the elements in rows ir through jr and in columns ic through jc.
augment(A, B, C,...)	Creates a single matrix comprised of vectors $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$ all with the same number of rows, concatenated from left to right.
$\operatorname{stack}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$.	Creates a single matrix comprised of vectors A, B, C, ... all with the same number of columns, concatenated from top to bottom.
M ${ }^{\prime \prime}$	Extracts the nth column of a matrix as a column vector.
x^{-1}	Takes the inverse of a matrix.
\| $\times 1$	Takes the determinant of the matrix.
$\stackrel{\rightharpoonup}{\hat{n}} \cdot \stackrel{\rightharpoonup}{\hat{n}} \times \times \overrightarrow{\mathrm{r}}$	The vector dot and cross product.

$$
\operatorname{stack}\left[\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right),\left(\begin{array}{cc}
s & t \\
u & v \\
w & x \\
y & z
\end{array}\right)\right] \rightarrow\left(\begin{array}{cc}
a & b \\
c & d \\
s & t \\
u & v \\
w & x \\
y & z
\end{array}\right)
$$

$$
\text { augment }\left[\left(\begin{array}{cc}
a & b \\
c & d \\
e & f
\end{array}\right),\left(\begin{array}{ccc}
r & s & t \\
u & v & w \\
x & y & z
\end{array}\right)\right] \rightarrow\left(\begin{array}{ccccc}
a & b & r & s & t \\
c & d & u & v & w \\
e & f & x & y & z
\end{array}\right)
$$

submatrix $\left[\left(\begin{array}{ccccc}a & b & r & s & t \\ c & d & u & v & w \\ e & f & x & y & z\end{array}\right), 2,3,3,5\right] \rightarrow\left(\begin{array}{ccc}u & v & w \\ x & y & z\end{array}\right)$

$$
\left(\begin{array}{lll}
u & v & w \\
x & y & z
\end{array}\right)^{\langle 2\rangle} \rightarrow\binom{\mathrm{v}}{\mathrm{y}}
$$

5 Practice

1. If it exists, find a solution to the following set of equations.

$$
\begin{aligned}
& 3 x+2 \cdot y=16.5+z \\
& -91.25-5 w+9 \cdot y=2.5 x+0.5 z \\
& 55-w=3 x+20 z \\
& 2 z+y=5-x-2 w
\end{aligned}
$$

$\mathrm{A}:=\left(\begin{array}{cccc}0 & 3 & 2 & -1 \\ -5 & -2.5 & 9 & -0.5 \\ 1 & 3 & 0 & 20 \\ 2 & 1 & 1 & 2\end{array}\right)$

$$
|\mathrm{A}|=-1.427 \times 10^{3}
$$

$X:=\operatorname{lsolve}(A, B)=\left(\begin{array}{c}-4.858 \\ 1.16 \\ 7.919 \\ 2.819\end{array}\right)$
2. For the matrices defined below, performed the requested operations (if possible). If a particular operation is not possible, can you give the reason why?

$$
A:=\left(\begin{array}{ccc}
6 & 4 & 2 \\
5 & 3 & 1
\end{array}\right) \quad X:=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \quad Y:=\left(\begin{array}{ccc}
3 & 2 & -4 \\
2 & -1 & 3 \\
0 & 1 & 5
\end{array}\right) \quad Z:=\left(\begin{array}{cc}
10 & 1 \\
13 & 50 \\
-32 & 3
\end{array}\right)
$$

i. $\quad \mathrm{X} \cdot \mathrm{Y}, \mathrm{Y} \cdot \mathrm{X}, \mathrm{X} \cdot \mathrm{Z}, \mathrm{Z} \cdot \mathrm{X}$
ii. $\quad A \cdot X, X \cdot A, A \cdot A, A^{-1} \cdot A$
iii. $\quad \mathrm{X}+\mathrm{Y}, \mathrm{Y}+\mathrm{X}$
iv. $\quad A^{T}, X^{T}, Z^{T}$
v. $\quad \mathrm{Y}-\mathrm{Z}, \mathrm{Y}-\mathrm{X}$
vi. $\quad|\mathrm{A}|,|\mathrm{X}|,|\mathrm{Y}|,|\mathrm{Z}|$
.. $\mathrm{X} \cdot \mathrm{Y}=\left(\begin{array}{ccc}7 & 3 & 17 \\ 22 & 9 & 29 \\ 37 & 15 & 41\end{array}\right) \quad \mathrm{Y} \cdot \mathrm{X}=\left(\begin{array}{ccc}-17 & -16 & -15 \\ 19 & 23 & 27 \\ 39 & 45 & 51\end{array}\right)$

$$
\mathrm{X} \cdot \mathrm{Z}=\left(\begin{array}{cc}
-60 & 110 \\
-87 & 272 \\
-114 & 434
\end{array}\right)
$$

(i.) $A \cdot X=\left(\begin{array}{lll}36 & 48 & 60 \\ 24 & 33 & 42\end{array}\right)$
$\mathrm{X} \cdot \mathrm{A}=1 \quad \mathrm{~A} \cdot \mathrm{~A}=1$
Inner dimension doesn't
$\mathrm{A}^{-1} \cdot \mathrm{~A}=\mathbf{1}$
match.
Can only determine the inverse of a square matrix.
iii. $X+Y=\left(\begin{array}{ccc}4 & 4 & -1 \\ 6 & 4 & 9 \\ 7 & 9 & 14\end{array}\right) \quad Y+X=\left(\begin{array}{ccc}4 & 4 & -1 \\ 6 & 4 & 9 \\ 7 & 9 & 14\end{array}\right)$
v. $A^{T}=\left(\begin{array}{ll}6 & 5 \\ 4 & 3 \\ 2 & 1\end{array}\right)$

$$
\mathrm{X}^{\mathrm{T}}=\left(\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right)
$$

$$
\mathrm{Z}^{\mathrm{T}}=\left(\begin{array}{ccc}
10 & 13 & -32 \\
1 & 50 & 3
\end{array}\right)
$$

v. $\mathrm{Y}-\mathrm{Z}=1$
matrices not same size

$$
\mathrm{Y}-\mathrm{X}=\left(\begin{array}{ccc}
2 & 0 & -7 \\
-2 & -6 & -3 \\
-7 & -7 & -4
\end{array}\right)
$$

vi. $\quad|\mathrm{A}|=\boldsymbol{1} \quad|\mathrm{X}|=0$

$$
\begin{array}{|l|l|}
\hline \mathrm{Y}|=-52 \quad| \mathrm{Z} \mid=\mathbf{1} \\
\hline
\end{array}
$$

Can only take determinant of square matrix.
3.

Use the matrix tool on the palette to define the following 3×3 matrix:

$$
A:=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

Add a row containing the entries [149] after the second row to form the following

$$
A:=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$ matrix:

$$
A:=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
1 & 4 & 9 \\
7 & 8 & 9
\end{array}\right)
$$

$$
A:=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
1 & 4 & 9 \\
7 & 8 & 9
\end{array}\right)
$$

Add an additional column to the matrix with the entries [1 23 4] to form the following 4 x 4 matrix:

$$
A:=\left(\begin{array}{llll}
1 & 2 & 3 & 1 \\
4 & 5 & 6 & 2 \\
1 & 4 & 9 & 3 \\
7 & 8 & 9 & 4
\end{array}\right)
$$

$$
A:=\left(\begin{array}{llll}
1 & 2 & 3 & 1 \\
4 & 5 & 6 & 2 \\
1 & 4 & 9 & 3 \\
7 & 8 & 9 & 4
\end{array}\right)
$$

	1	2	3	4	5	6	7	
	1	-2.693	-1.756	-93.681	-63.083	17.462	-67.776	44.282
2	37.155	41.177	70.278	-11.707	-89.589	-55.364	-88.86	
	3	23.51	22.806	-29.001	-75.01	-16.894	37.892	-37.349
4	-67.058	-54.832	-29.294	-46.296	70.025	60.73	99.992	
5	38.947	-62.866	34.833	24.05	-73.681	16.83	28.039	
6	-49.817	-57.234	73.037	-31.134	94.606	19.942	-47.268	
7	72.397	52.075	-81.701	79.857	-25.839	-42.996	21.863	
8	12.152	-49.102	56.238	-80.133	37.703	-88.444	11.472	
9	-93.906	93.765	-91.472	-81.187	44.301	50.626	31.24	
10	29.669	98.298	18.395	-40.365	-88.655	-19.421	29.298	
11	38.408	13.094	78.034	33.442	73.434	-95.486	15.137	
12	23.772	-81.582	-63.937	40.616	-63.843	-54.16	18.99	
13	-59.552	-88.433	-41.557	51.717	-81.029	-2.619	72.554	
14	26.837	-78.812	91.302	86.391	68.042	15.704	-59.263	
15	81.752	75.923	-23.273	31.579	-99.706	96.004	67.779	
16	-21.691	-95.129	77.351	-63.798	-18.522	-71.221	\ldots	

