Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

At the end of this lecture, you should be able to:

- create matrices and vectors in Mathcad
- edit matrices
- perform basic matrix math operations
- solve a system of linear equations using matrix math

1. Creating Matrices

There are several ways to create a matrix

A. The "Insert Matrix" Window (<Ctrl>M)

Key Point
Refer to matrix size by rows x columns
Use the tab key to move between place holders.

B. Paste a matrix from elsewhere (such as excel or a text file)

- Type variable name in Mathcad
- Open an Excel file.
- Select some data
- Copy
- Paste into the placeholder of the variable

Key Point

You must paste into a placeholder of a variable or the data wil import as text.

C. Insert a table

- Select Insert/Data/Table from the Insert menu
- Click and then right click the upper-left cell
- Select "Import" from the menu
- Use the browser to find the file containing the data (matrix.txt)
- Click OK
- Give the table a variable name

Key Points

- Do NOT create the variable name first!
- Make sure to import the table by right clicking
- Nice to use this for big tables (scroll bars)

[:=]	:=							
		0	1					
	0	-2.693	-1.756					
	1	37.155	41.177					
	2	23.51	22.806					
	3	-67.058	-54.832					
	4	38.947	-62.866					
	5	-49.817	-57.234					
	6	72.397	52.075					
	7	12.152	-49.102					
	8	-93.906	93.765					
	9	29.669						

2. Referencing Arrays

Individual elements are referenced with subscripts by typing the [key.

Demonstration

1. Create the following matrix using subscript (index) notation.

:=

2. What is the value of the 9th row, 3rd column of M?

3. Editing a Matrix

- You can add or delete rows and columns to existing matrices.
- It is tricky.

To add a row/column:

- 1. Place cursor above rows and to the left of the rows and columns to be added.
- 2. Open the Insert Matrix window.
- 3. Type the number of rows and columns to add and click Insert.

To delete a row/column:

- 1. Place cursor in the uppermost row and leftmost column of the rows and columns to be removed.
- 2. Open the Insert Matrix window.
- 3. Type the number of rows and columns to delete and click Delete.

Demonstration

Add 1 row 0 columns

$$B := \begin{pmatrix} 1 & -2 & 5 \\ 3 & 0 & 9 \end{pmatrix} \qquad B := \begin{pmatrix} 1 & -2 & 5 \\ \bullet & \bullet & \bullet \\ 3 & 0 & 9 \end{pmatrix} \qquad B := \begin{pmatrix} 1 & -2 & 5 \\ 8 & 1 & 1 \\ 3 & 0 & 9 \end{pmatrix}$$

Delete 2 columns, 1 row by first 1 column 1 row and then 1 column 0 rows.

$$B := \begin{pmatrix} 1 & -2 & 5 \\ 8 & 1 & 1 \\ 3 & 0 & 9 \end{pmatrix} \qquad B := \begin{pmatrix} -2 & 5 \\ 1 & 1 \end{pmatrix} \qquad B := \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$\mathbf{B} := \begin{pmatrix} 1 & -2 & 5 \\ 3 & 0 & 9 \end{pmatrix} \qquad \mathbf{B} := \begin{pmatrix} 1 & -2 & 5 \\ 8 & 1 & 1 \\ 3 & 0 & 9 \end{pmatrix} \qquad \mathbf{B} := \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

Key Point Notice that to add a row in the middle of B, you add 1 row and 0 columns.

4. Solving Systems of Linear Equations

Explanation

- Recall that matrix math can be used solve systems of linear equations.
- A system of linear equations is one in which the variables (x, y, z) appear only to the power of 1. .

x + y = -6

$$2\mathbf{x} + 4 \cdot \mathbf{y} = -88$$

A system of linear equations can be written the following matrix form. .

 $A \cdot X = B$

where $A = \begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix}$ $X = \begin{pmatrix} x \\ y \end{pmatrix}$ $B = \begin{pmatrix} -6 \\ -88 \end{pmatrix}$ The system of linear equations written in this form has the rollowing solution.

$$A^{-1} \cdot A \cdot X = A^{-1} \cdot B$$
$$I \cdot X = A^{-1} \cdot B$$

$$\mathbf{X} = \mathbf{A}^{-1} \cdot \mathbf{B}$$

- The order of the multiplication matters. The solution is A⁻¹B not BA⁻¹
- To determine if a solution exists to a system a linear equations, take the determinant of the coefficient matrix (A). If the determinant is non-zero, a solution exits.

Demonstration

Key Points

- Mathcad can obtain the answers in two ways, using an inverse or using lsolve
- Both are correct.
- Isolve uses a faster algorithm which may become important for large matrices.

5. Operations With Matrices

See Matrix Toolbar (unders Insert-toolbar-matrix) for many matrix operations

Basic Matrix Math Review

Addition and subtraction

- Two matrices can be added and subtracted only if they are the same size.
- · Addition and subtraction is done element by element to create a matrix of the same size

$$\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} + \begin{pmatrix} u & v & w \\ x & y & z \end{pmatrix} \rightarrow \begin{pmatrix} a+u & b+v & c+w \\ d+x & y+e & f+z \end{pmatrix}$$

Multiplication

- Two matrices can be multiplied if their inner dimensions are the same. Example: 2x3 * 3x2 not 3x2 * 3x2.
 - Example: 3x3 * 3x1 not 3x1 * 3x3
- The outer dimensions tell the size of the matrix. Example: 2x3 * 3x2 will produce a 2x2 matrix
- Remember that order matters with matrix multiplication!

 $\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \cdot \begin{pmatrix} u & v & w \\ x & y & z \end{pmatrix} \rightarrow$ Error because inner dimensions don't match $\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \cdot \begin{pmatrix} u & v \\ w & x \\ y & z \end{pmatrix} \rightarrow \begin{pmatrix} a \cdot u + b \cdot w + c \cdot y & a \cdot v + b \cdot x + c \cdot z \\ w \cdot e + d \cdot u + f \cdot y & x \cdot e + d \cdot v + f \cdot z \end{pmatrix}$ $\begin{pmatrix} u & v \\ w & x \\ y & z \end{pmatrix} \cdot \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \rightarrow \begin{pmatrix} a \cdot u + d \cdot v & v \cdot e + b \cdot u & c \cdot u + f \cdot v \\ a \cdot w + d \cdot x & x \cdot e + b \cdot w & c \cdot w + f \cdot x \\ a \cdot y + d \cdot z & z \cdot e + b \cdot y & c \cdot y + f \cdot z \end{pmatrix}$

Division

- There is not matrix division!
- Multiply by the inverse to move matrices across = signs.

Other Matrix Operations

Functions	Description
rows(A)	Returns the number of rows in matrix A
cols(A)	Returns the number of columns in matrix A
	Creates a new matrix which is a portion of array A. The portion
submatrix(A, ir, jr, ic, jc)	consists of the elements in rows ir through jr and in columns ic
	through jc.
augment(A B C)	Creates a single matrix comprised of vectors A, B, C, all with the
augment(A, B, C,)	same number of rows, concatenated from left to right.
stack(A P C)	Creates a single matrix comprised of vectors A, B, C, all with the
Stack(A, B, C,)	same number of columns, concatenated from top to bottom.
M<>	Extracts the nth column of a matrix as a column vector.
×-1	Takes the inverse of a matrix.
×	Takes the determinant of the matrix.
x • y x×y	The vector dot and cross product.

5 Practice

1. If it exists, find a solution to the following set of equations.

 $3x + 2 \cdot y = 16.5 + z$ -91.25 - 5w + 9 \cdot y = 2.5x + 0.5z 55 - w = 3x + 20z 2z + y = 5 - x - 2w

2. For the matrices defined below, performed the requested operations (if possible). If a particular operation is not possible, can you give the reason why?

ii.

Use the matrix tool on the palette to define the following 3x3 matrix:

(1	2	3)
A :=	4	5	6
	7	8	9)

Add a row containing the entries [1 4 9] after the second row to form the following matrix:

A :=	(1	2	3)	
	4	5	6	
	1	4	9	
	7	8	9)	

Add an additional column to the matrix with the entries [1 2 3 4] to form the following 4x4 matrix:

A :=	(1)	2	3	1)
	4	5	6	2
	1	4	9	3
	7	8	9	4)

	(1	2	3
A :=	4	5	6
	7	8	9)

A :=	(1)	2	3
	4	5	6
	1	4	9
	7	8	9)

	(1	2	3	1
A :=	4	5	6	2
	1	4	9	3
	7	8	9	4)

3.

		1	2	3	4	5	6	7	
	1	-2.693	-1.756	-93.681	-63.083	17.462	-67.776	44.282	
	2	37.155	41.177	70.278	-11.707	-89.589	-55.364	-88.86	
	3	23.51	22.806	-29.001	-75.01	-16.894	37.892	-37.349	
	4	-67.058	-54.832	-29.294	-46.296	70.025	60.73	99.992	
	5	38.947	-62.866	34.833	24.05	-73.681	16.83	28.039	
	6	-49.817	-57.234	73.037	-31.134	94.606	19.942	-47.268	
	7	72.397	52.075	-81.701	79.857	-25.839	-42.996	21.863	
M =	8	12.152	-49.102	56.238	-80.133	37.703	-88.444	11.472	
	9	-93.906	93.765	-91.472	-81.187	44.301	50.626	31.24	
	10	29.669	98.298	18.395	-40.365	-88.655	-19.421	29.298	
	11	38.408	13.094	78.034	33.442	73.434	-95.486	15.137	
	12	23.772	-81.582	-63.937	40.616	-63.843	-54.16	18.99	
	13	-59.552	-88.433	-41.557	51.717	-81.029	-2.619	72.554	
	14	26.837	-78.812	91.302	86.391	68.042	15.704	-59.263	
	15	81.752	75.923	-23.273	31.579	-99.706	96.004	67.779	
	16	-21.691	-95.129	77.351	-63.798	-18.522	-71.221		